

5

Getting started with the ModelFitter for Excel

Working with the example

Guideline

- 1. Overview Excel Tool
- 2. Help
- 3. Main Tab
 - Control Bar
 - Settings
 - Parameters
 - Statistics
- 4. Data Tab
 - Database
 - Simulation results
- 5. Differential State Variables
- 6. Plot Tabs
- 7. History

Overview Excel Tool

TLK-Thermo GmbH / www.tlk-thermo.com / ModelFitter / August 2022

Help

On the Help Tab a lot of terms are explained

[s. Help Tab]

Some terms also can be easily looked up on the internet (e.g. Wikipedia, etc.)

Main Tab Control Bar

Calculate

- Calculates the included static data points [s. Data Tab]
- Outputs are simulation results and some statistics
- No fitting

Fit 1 Step

- Only 1 step
- several times Fit1Step is not the same as a complete fit with several steps
- New fitting parameters
- See also fitting history

Fit

- Complete fit
- Number of steps: maxIterations [s. Settings]
- New fitting parameters
- See also fitting history

Main Tab Control Bar

Log Window

- Shows messages from the ModelFitter
- Pops up automatically
- After closing reopen with button "Show Log Window"

Change Model

See documentation of "How to Change Model" for changing the Exceltool to fit other models [s. Help Tab]

Main Tab Settings

Most important settings

• printStats:

Additional information about the performance of the fitting process are written into the log window

maxIterations:

Maxmimum number of steps the ModelFitter does to improve the fitting parameters

dxdtTolerance:

Global tolerance for the change of differential state variables during steady state

Only if problems occur consider to adjust the settings

[s. Help Tab]

Settings

FileName	C:\Program F	Path and name of the Model
printStats	×	Write additional messages
maxIterations	20	Number of the Levenberg-Marquard-Iterations
dxdtTolerance	1,00E-07	Steady state condition
diffStep	1,00E-05	Stepsize for numeric differentiation
epsf	1,00E-50	Minimal change of the fitting target residuals
epsg	1,00E-50	Minimum of the gradient
epsx	1,00E-50	Minimal change of the fitting parameter
tStop	100	Stop time for integration

Main Tab

Parameters

Fitting parameters [s. Main Tab]

- Have to be marked as such
- As name the full variable path is needed, e.g. "comp.areaSuctionValve"
- Start with meaningful values

Fixed parameters [s. Main Tab] Parameters that are marked with a red cross are assigned as fixed parameters during simulation

ameters						[9 Ap
Fit	Index	Alias	Name	Value Unit	Min	Мах	Nom
4	1	SuctionArea	SuctionValve	1,464E-05 m^2	1,000E-10	1,000E-03	1,000
4	2	Leakage	areaLeakage	6,181E-08 m^2	0,000E+00	1,000E-03	1,000
4	3	DeadSpace	⇒DeadSpace	5,387E-03 1	0,000E+00	1,000E-01	1,000
4	4	DischargeDelay	(eValveDelay	2,464E-04 s	0,000E+00	1,000E-02	1,000
4	5	DischargeArea	chargeValve	5,747E-06 m^2	1,000E-10	1,000E-03	6,000
×	6	pInitialLow	InitialSuction	1,000E+06 Pa			
×	7	pInitialHigh	ialDischarge	8,000E+06 Pa			
×	8	х	х	1,000E+00 1			
¥	q						

Main Tab Statistics

Sigma

"How near are the current values of the fitting parameters to the optimum?"

Statistics										
Determinant:	1,02E+57	Correl	ation M	atrix						
σ	$\sigma_{\text{normalized}}$	1	2	3	4	5	6	7	8	9
2,82E-07	1,92E-02	1,00	-0,03	0,03	0,92	-0,74				
1,53E-08	2,48E-01	-0,03	1,00	-0,89	0,26	0,16				
4,07E-03	7,56E-01	0,03	-0,89	1,00	-0,34	-0,12				
1,39E-04	5,62E-01	0,92	0,26	-0,34	1,00	-0,65				
3,25E-07	5,65E-02	-0,74	0,16	-0,12	-0,65	1,00				

Correlation Matrix

"How does the fitting parameters influence each other?"

Determinant

"How well does the database (e.g. measurement plan) fit to the model compared to other databases?"

Main Tab Statistics

R²

"How well does the fitting parameters hit the database?"

Statistics	
R²	RMSD
0,000E+00	8,313E-02
0,000E+00	4,188E+03

RMSD

"How big is the variation of the residuals?" (residuals = dependent – simulation output)

Data Tab Database

The Database contains [s. Data on Data Tab]

- Static points (Data Points) of
- Simulation inputs (Independents),

• Desired outputs (Dependents) and

• Standard Deviation (sigma)

Sigma is also used for weighting the dependents to each other

Here a global sigma for every dependent is entered on the Main Tab [s. Targets on Main Tab]

Data (Measurement, CFD, ...) Data Points Independent Dependent 4 Apply 25 Apply 2 Apply Include Index Alias T_suc p_dis m flow m flow p_suc Name T_suc p_dis p_suc comp.portA.m_flow Unit Pa Pa kg/s All 1,100E+07 3,500E+06 1.100E+07 3.530E-2.984E+0 1.167E+02 9.000E+06 4.000E+06 1.061E+04 2.833E+0 1.667E+0 7.000E+06 3.500E+0 3.054E-02 1.425E+03 7,000E+06 6 616E-03 5,861E+03 1,004E+04 3.084E+0 1.100E+ 00E+06 6.725E-0 4,500E+06 7,685E-0 10 4.500E+06 1.229E+03 6,575E-02 2.833E+02 1.300E+0 3.500E+06 1.032E+04 12 7.669E-02 7.000E+06 1.167E+02 1.300E+0 4,500E+06 8.919E-02 1.331E+04 14 7,000E+06 4,500E+06 1,100E+07 5,298E+03 1.667E+0 1.300E+07 4.500E+06 3.065E-0 2.534E+03 4,838E+03 4,167E+0 9,000E+06 4,500E+06 7,921E-0 3.084E+0 1.300E+07 4.000E+06 2.931E+0 1.167E+02 7.000E+06 4.500E+06 8,913E-02 1.016E+04 3 033E+02 7.000E+06 3 500E+06 5.848E-02 2.884E+0 1.300E+07 4,000E+06 22 24 2,933E+02 1.300E+07 3,500E+06 5,268E-02 5.849E+03 8,178E-02 7,486E+03 25 /ersion 1.0

Data Tab Simulation results

Beside the Database simulation results are shown

[s. Simulation on Data Tab]

- Simulation output
- Calculated residuum between simulation output and dependents
- Possible additional ouputs

	311				Simulation
ILK-Thermo G	THE T				Simulation
	Simulation Output		Output Residuals	•	Simulation Output
	(Additional)			s)	(Dependent Variable
	2 Apply				
et	speed	Р	m_flow	Р	m_flow
summary.efflsE	mmary.speed_rpm.omp.			comp.shaftPower	omp.portA.m_flow
	1/min	W	kg/s	W	kg/s
6.388E-0	2.500E+03	-7.392E+01	-3.324E-02	3.932E+03	9.825E-02
5 406E-0	7 000E+03	-5.931E+03	-1 104E-01	1.695E+04	1 764E-01
8 664E-0	1 000E+03	-7.242E+01	-1.015E-02	2,213E+03	4.545E-02
4 304E-0	7.000E+03	-6.362E+03	-1 200E-01	1.697E+04	1,915E-01
7.846E-0	1.000E+03	1.465E+01	-8.884E-03	1,176E+03	5.163E-02
8.317E-0	1.000E+03	5.495E+01	-7.722E-03	1.370E+03	3.826E-02
5.381E-0	4.000E+03	-1.491E+03	-6.672E-02	7.352E+03	1.329E-01
5.977E-0	5,500E+03	-4,197E+03	-9,477E-02	1,424E+04	1.620E-01
5,423E-0	7,000E+03	-7,453E+03	-1,274E-01	2,083E+04	2,042E-01
7,953E-0	1,000E+03	6,902E+01	-7,179E-03	1,160E+03	4,320E-02
6,588E-0	5,500E+03	-4,360E+03	-9,309E-02	1,468E+04	1,588E-01
2,515E-0	7,000E+03	-7,297E+03	-1,286E-01	1,743E+04	2,052E-01
5,187E-0	7,000E+03	-7,750E+03	-1,459E-01	2,106E+04	2,351E-01
6,079E-0	7,000E+03	-6,342E+03	-9,765E-02	1,819E+04	1,561E-01
3,023E-0	5,500E+03	-4,354E+03	-1,148E-01	1,284E+04	1,968E-01
8,204E-0	2,500E+03	-4,850E+02	-2,762E-02	5,783E+03	7,835E-02
8,705E-0	1,000E+03	-9,549E+01	-1,073E-02	2,630E+03	4,138E-02
6,951E-0	2,500E+03	-2,398E+02	-4,292E-02	5,077E+03	1,221E-01
7,394E-0	4,000E+03	-2,232E+03	-6,533E-02	1,116E+04	1,321E-01
2,378E-0	7,000E+03	-7,586E+03	-1,471E-01	1,775E+04	2,362E-01
3,801E-0	7,000E+03	-5,419E+03	-9,891E-02	1,439E+04	1,574E-01
8,646E-0	1,000E+03	-3,318E+01	-1,195E-02	2,628E+03	4,278E-02
8,573E-0	1,000E+03	-3,887E+01	-7,427E-03	1,830E+03	3,219E-02
8,346E-0	2,500E+03	-7,345E+02	-3,041E-02	6,583E+03	8,308E-02
5,574E-0	4,000E+03	-1,767E+03	-7,993E-02	9,253E+03	1,617E-01

Differential State Variables

The steady state definition is mainly influenced by the values given here Cumulating and effectless differential state variables are marked with a cross [s. Differential State Tab]

fferential State Variab some specific different er tries to bring the rest ttodetect is a function t ecuted.	al state variables the differentiation cannot be brought to zero (" cumulating Variables "). In this case, those vari of the differential states to zero. Otherwise the fitter could not come to stady state. detect recommended nominal values of the differential state variables. Additionally, the exclusion of the state v	ables has to be ma ariables that should	Autodete rked for being igno	red while the
some specific different er tries to bring the rest todetect is a function t ecuted.	al state variables the differentiation cannot be brought to zero (" cumulating Variables "). In this case, those vari If the differential states to zero. Otherwise the fitter could not come to stady state. detect recommended nominal values of the differential state variables. Additionally, the exclusion of the state v	ables has to be ma ariables that should	rked for being igno	red while the
e as				
te Manialata - Manaa				
ate variable Name		Unit Min	Max	Nominal
comp.suc	onChamberVLEFluid.p	0,00E+00	1,00E+300	1,00E+06
✓ comp.disc	argeChamberVLEFluid.p	0,00E+00	1,00E+300	7,99E+06
Comp.port	.h_outflow	-1,00E+300	1,00E+300	3,50E+05
✓ comp.port	.h_outflow	-1,00E+300	1,00E+300	3,50E+05
💥 comp.getl		-1.00E+300	1,00E+300	1,00E-03

Version 1.0	info@tlk-thermo.de
-------------	--------------------

Plot Tabs

Dependents vs. Independents

Here the mass flow rate in the simulation rises too high compared with the dependent with respect to the speed (independent) [s. Outputs vs. Inputs Tab]

Residuals vs. Independents

Same conclusion. Residual between simulation output and dependent grows with higher speed. [s. Residuals vs. Inputs Tab]

Plot Tabs

Via bar charts, particular data points can easily be localized.

[s. Tabs of Data Plots, Fit Data Plots, Additional Outputs]

TLK-Thermo GmbH / www.tlk-thermo.com / ModelFitter / August 2022

History

In case of a Fit, a Fit1Step or essential changes of the differential state variables informations are saved in the fitting history

[s. Fitting History Tab]

History of Fitting Parameter										
Clear All										
Fit One Step										
Time Stamp	Fit	Index	Alia	s Name	Start Value	Fitted Value Unit	σ _{normalized} Dependents	R²	RMSD	Target
15.06.2016 13:46:23	1	1	SuctionArea	SuctionValve	1,464E-05	7,744E-06 m^2	1,92E-02 m_flow	0,000E+00	8,313E-02	1
	1	2	Leakage	areaLeakage	6,181E-08	2,383E-07 m^2	2,48E-01 P	0,000E+00	4,188E+03	1
	4	0	DeedOneee	DeedOnees	E 207E 02	1 244E 02 4	7.565.01			
	1	3	DeadSpace	speadSpace	5,387E-03	1,2416-02 1	7,000-01			
	1	4	DischargeDelay	jeValveDelay	2,464E-04	2,449E-04 s	5,62E-01			
	1 1 1	3 4 5	DischargeDelay DischargeArea	jeValveDelay ichargeValve	2,464E-04 5,747E-06	2,449E-04 s 5,306E-06 m ²	5,62E-01 5,65E-02			
	1 1 1 0	3 4 5 6	DischargeDelay DischargeArea plnitialLow	ichargeValve InitialSuction	5,387E-03 2,464E-04 5,747E-06 1,000E+06	2,449E-04 s 5,306E-06 m ² 1,000E+06 Pa	5,62E-01 5,65E-02			
	1 1 1 0 0	3 4 5 6 7	DischargeDelay DischargeArea plnitialLow plnitialHigh	ichargeValve initialSuction ialDischarge	5,387E-03 2,464E-04 5,747E-06 1,000E+06 8,000E+06	2,449E-02 1 2,449E-04 s 5,306E-06 m ^A 2 1,000E+06 Pa 8,000E+06 Pa	5,62E-01 5,65E-02			

ModelFitter

TLK-Thermo GmbH Hans-Sommer-Straße 5 38106 Braunschweig / Germany

Phone: +49/531/390 76 - 28 Fax: +49/531/390 76 - 29 E-Mail: software@tlk-thermo.de www.tlk-thermo.com