

Simulator Suite

Software package for the simulation and evaluation of models

Introduction

Functional Mock-Up Interface

Products:

- TLK-Simulator for Excel
- TLK-Simulator for LabVIEW
- TLK-Simulator for TISC
- TLK-Simulator for TRNSYS
- TLK-Simulator for Simulink
- TLK-Simulator for Python
- TLK-Simulator for C/C++

Introduction

Using sophisticated models in Excel

- Connect existing models
- Simulation and Visualization
- Real-Time Simulation and Parameter Variation

Interfacing and Simulation

TLK-Simulator for Excel

x	5-	C - 🖁 - =								Map	pe1 - Excel				
D	ATEI STAR	t einfügen	SEITENL	AYOUT	EODMELN		Nous Pagis	tarkarta ÜD	EDNDÜLENI				-INS TEAI	M MoBA S	imulator
		Dyna	mic Results									×			
Simulate ₩				Inputs	Parameters	Results	Experiment Setu	p Modellr	nfo \						
LO EN	ad Simulate	Load		EC N Darar	Name	Va	alue	Unit	Descripti	on					
Sinc	FMU FMU FMU Paran					tputTypes									
Single Calculation Parameter Variation Edit			Luit Sill	u 0,2				Real Inpu	Real Input u description						
J21 $\overline{}$: $\times \checkmark f_x$				u_in	t 5			Integer Ir	nput u_int descri	ption					
				u_bo	ool tru	ue		Boolean	Input u_bool des	scription					
													-		
		Α	В										L	м	N
1	File Path:		C:\Users\C	hristiar						ОК	Discard	Cancel			
2	Instance Na	me:	inputOutpu	utTypes									de la constanción de		
3						Inputs:					Outputs:				
4	Parameters:					time	itputTypes.u	tTypes.u_int	ypes.u_boo	inputO	utputTypes.y	tTypes.y_int	ypes.y_bool		
5	inputOutput	tTypes.p_string	changeme			S					s				
6						0	0.2	5	WAHR		5.04	15	WAHR		
7						0.1	0.2	5	WAHR		5.14	15	WAHR		
8						0.2	0.2	5	WAHR		5.24	15	WAHR		
9						0.3	0.2	5	WAHR		5.34	15	WAHR		
10						0.4	0.2	5	WAHR		5.44	15	WAHR		
11						0.5	0.2	5	WAHR		5.54	16	WAHR		
12						0.6	0.2	5	WAHR		5.64	16	WAHR		
13						0.7	0.2	5	WAHR		5.74	16	WAHR		
14						0.8	0.2	5	WAHR		5.84	16	WAHR		
15						0.9	0.2	5	WAHR		5.94	16	WAHR		
16						1	0.2	5	WAHR .		6.04	17	W/AHR		

Interfacing and Simulation

Solving Methods

ODE-Solver:

- Sundials CVode(S) (BDF)
- Sundials ARKode (Runge-Kutta)
- A Explicit Euler
- Modified DASSL

Algebraic Solver:

- A Sundials Kinsol
- Modified Newton Raphson (including Line-Search)

Legend for level of product maturity:

Development Status

TLK-Thermo GmbH | www.tlk-thermo.com | Simulator Suite | September 2020

Interfacing and Simulation

FMI Cross-Check of current tool versions

Source of FMU		Degree of fulfilment (Model Exchange / Co-Simulation)			
Software	Version	FMI 1.0	FMI 2.0		
AMESim	14, 15	37,5% (6/16)	100% (6/6)		
CATIA	R2015x, R2016x	90% (36/40)	100% (36/36)		
DS-FMU_Export_from_Simulink	2.1, 2.1.1, 2.2, 2.3	97,3% (74/76)	100% (74/74)		
dSPACE_TargetLink	2018-B	-	100% (6/6)		
Dymola	2015FD01 - 2019FD01	100% (148/148)	100% (128/128)		
FMIToolbox_MATLAB	2.1, 2.3	100% (36/36)	100% (26/26)		
JModelica.org	1.15	87,5% (7/8)	100% (8/8)		
MapleSim	2016.2, 2018, 2019	100% (30/30)	94,4% (34/36)		
MWorks	2016	71,4% (20/28)	100% (4/4)		
Silver	3.2, 3.3, 3.5	100% (29/29)	100% (6/6)		
SimulationX	3.7.41138, 4.0.4	77,7% (21/27)	88,8% (24/27)		

Mathematics of FMUs and DAEs

TLK-Thermo GmbH | www.tlk-thermo.com | Simulator Suite | September 2020

Partial Derivatives introduced in FMI 2.0

Derivatives w.r.t. differential states x

$$J_x = \frac{dF}{dx} = \frac{d\frac{dx}{dt}}{dx}$$

- Implicit ODE-Solver
- Finding the steady state of dynamic models

Derivatives w.r.t. **inputs** *u*:

$$J_u = \frac{dF}{du} = \frac{d\frac{dx}{dt}}{du}$$

- Sensitivities (CVodeS)
- Optimal Control

If derivatives are not available, they are calculated numerically

Detailed Mathematical Analysis

State Space Form

The State Space Form	of the system has () differential state	, 3 inputs and	7 outputs.
A =				

B =

C =

	_
	_
-	_

<i>D</i> –						
	fan.p_h_Pa	fan.V_flow_in_m3ps	fan.n_Hz			
fan.P_loss	0.017	0.0134	0.00361			
fan.P_loss_blade	0.00606	0.011	-0.00603			
fan.P_loss_impact	0	-3.74e+03	-3.1e+03			
fan.dp	-645	-489	-2.65e+03			
fan.P_shaft	1.09e+03	0.989	204			
fan.P_hyd	161	43.4	28.9			
fan.V_flow	176	-28.4	0.000579			

Direct Dependency Graph

Determination of Time Constants

Contribution to Physical States:

Number T	ïme Constan	t Contribution to States
40	0.0655 s	40.3% to heatPumpCycle_R407C.evaporator.vleFluidCell_a[20].h 25.6% to heatPumpCycle_R407C.condenser.vleFluidCell_a[1].h 8.7% to heatPumpCycle_R407C.condenser.vleFluidCell_a[19].h 3.3% to heatPumpCycle_R407C.condenser.vleFluidCell_a[2].h 3.0% to heatPumpCycle_R407C.condenser.vleFluidCell_a[2].h 1.9% to heatPumpCycle_R407C.condenser.vleFluidCell_a[3].h 1.9% to heatPumpCycle_R407C.condenser.vleFluidCell_a[3].h 1.1% to heatPumpCycle_R407C.condenser.vleFluidCell_a[5].h 1.0% to heatPumpCycle_R407C.condenser.vleFluidCell_a[6].h 1.0% to heatPumpCycle_R407C.condenser.vleFluidCell_a[6].h 1.0% to heatPumpCycle_R407C.condenser.vleFluidCell_a[6].h
41	0.0655 s	40.3% to heatPumpCyde_R407C.evaporator.vleFluidCell_a[20].h 25.6% to heatPumpCyde_R407C.condenser.vleFluidCell_a[1].h 8.7% to heatPumpCyde_R407C.condenser.vleFluidCell_a[2].h 3.3% to heatPumpCyde_R407C.condenser.vleFluidCell_a[2].h 3.0% to heatPumpCyde_R407C.condenser.vleFluidCell_a[1].h 1.9% to heatPumpCyde_R407C.condenser.vleFluidCell_a[3].h 1.9% to heatPumpCyde_R407C.condenser.vleFluidCell_a[3].h 1.1% to heatPumpCyde_R407C.condenser.vleFluidCell_a[5].h 1.0% to heatPumpCyde_R407C.condenser.vleFluidCell_a[5].h 1.0% to heatPumpCyde_R407C.condenser.vleFluidCell_a[6].h 1.0% to heatPumpCyde_R407C.condenser.vleFluidCell_a[6].h

Sensitivities

- > _SolverDebug
- > automotivePITuning

sens[automotivePITuning.compressor.rotatoryFlange.phi,automotivePITuning.u1] sens[automotivePITuning.compressor.rotatoryFlange.phi,automotivePITuning.u] sens[automotivePITuning.condenser.moistAirCell[1, 1].H_WallPlusFilm,automotivePITuning.u1] sens[automotivePITuning.condenser.moistAirCell[1, 1].H_WallPlusFilm,automotivePITuning.u1] sens[automotivePITuning.condenser.moistAirCell[1, 1].pressureDropState,automotivePITuning.u1] sens[automotivePITuning.condenser.moistAirCell[1, 1].pressureDropState,automotivePITuning.u1] sens[automotivePITuning.condenser.moistAirCell[1, 2].H_WallPlusFilm,automotivePITuning.u1] sens[automotivePITuning.condenser.moistAirCell[1, 2].H_WallPlusFilm,automotivePITuning.u1] sens[automotivePITuning.condenser.moistAirCell[1, 2].P_WallPlusFilm,automotivePITuning.u1] sens[automotivePITuning.condenser.moistAirCell[1, 2].pressureDropState,automotivePITuning.u1] sens[automotivePITuning.condenser.moistAirCell[1, 2].pressureDropState,automotivePITuning.u1] sens[automotivePITuning.condenser.moistAirCell[1, 2].pressureDropState,automotivePITuning.u1] sens[automotivePITuning.condenser.moistAirCell[1, 2].pressureDropState,automotivePITuning.u1]

Detailed Model Information

- Helpful model information about the simulated system
- Various options to customize the simulation in detail, for example by selecting and setting the solver (e.g. Sundials CVode, Sundials ARKode, Explicit Euler)
- Existing solvers are explicitly selected to solve complex thermodynamic systems

Thank you

If you have any questions, please don't hesitate to contact us at <u>simulator@tlk-thermo.com</u>

Or your contact person Johannes Schulz

j.schulz@tlk-thermo.com

TLK-Thermo GmbH Rebenring 31 38106 Braunschweig www.tlk-thermo.com

Tel.: +49/531/39076 - **241** Fax: +49/531/39076 - 29